the handbook of lithium ion battery pack design

The Handbook Of Lithium Ion Battery Pack Design
Author: John T Warner
Publisher: Elsevier
Release Date: 2015-05-23
Pages: 262
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology offers to the reader a clear and concise explanation of how Li-ion batteries are designed from the perspective of a manager, sales person, product manager or entry level engineer who is not already an expert in Li-ion battery design. It will offer a layman’s explanation of the history of vehicle electrification, what the various terminology means, and how to do some simple calculations that can be used in determining basic battery sizing, capacity, voltage and energy. By the end of this book the reader has a solid understanding of all of the terminology around Li-ion batteries and is able to do some simple battery calculations. The book is immensely useful to beginning and experienced engineer alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides you with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist this book helps you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. Offers an easy explanation of battery terminology and enables better understanding of batteries, their components and the market place. Demonstrates simple battery scaling calculations in an easy to understand description of the formulas Describes clearly the various components of a Li-ion battery and their importance Explains the differences between various Li-ion cell types and chemistries and enables the determination which chemistry and cell type is appropriate for which application Outlines the differences between battery types, e.g., power vs energy battery Presents graphically different vehicle configurations: BEV, PHEV, HEV Includes brief history of vehicle electrification and its future

Battery Management Systems For Large Lithium Ion Battery Packs
Author: Davide Andrea
Publisher: Artech House
Release Date: 2010
Pages: 302
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost."

Lithium Ion Batteries
Author: Gianfranco Pistoia
Publisher: Newnes
Release Date: 2013-12-16
Pages: 664
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume Features contributions from the world's leading industry and research experts Presents executive summaries of specific case studies Covers information on basic research and application approaches

Design And Analysis Of Large Lithium Ion Battery Systems
Author: Shriram Santhanagopalan
Publisher: Artech House
Release Date: 2014-12-01
Pages: 240
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Behaviour Of Lithium Ion Batteries In Electric Vehicles
Author: Gianfranco Pistoia
Publisher: Springer
Release Date: 2018-03-11
Pages: 344
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.

Lithium Ion Batteries And Applications  A Practical And Comprehensive Guide To Lithium Ion Batteries And Arrays  From Toys To Towns  Volume 2  Applications
Author: Davide Andrea
Publisher: Artech House
Release Date: 2020-06-30
Pages: 462
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This comprehensive, two-volume resource provides a thorough introduction to lithium ion (Li-ion) technology. Readers get a hands-on understanding of Li-ion technology, are guided through the design and assembly of a battery, through deployment, configuration and testing. The book covers dozens of applications, with solutions for each application provided. Volume Two focuses on small batteries in consumer products and power banks, as well as large low voltage batteries in stationary or mobile house power, telecom, residential, marine and microgrid. Traction batteries, including passenger, industrial, race vehicles, public transit, marine, submarine and aircraft are also discussed. High voltage stationary batteries grid-tied and off-grid are presented, exploring their use in grid quality, arbitrage and back-up, residential, microgrid, industrial, office buildings. Finally, the book explores what happens when accidents occur, so readers may avoid these mistakes. Written by a prominent expert in the field and packed with over 500 illustrations, these volumes contain solutions to practical problems, making it useful for both the novice and experienced practitioners.

Recycling Of Lithium Ion Batteries
Author: Arno Kwade
Publisher: Springer
Release Date: 2017-12-12
Pages: 288
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.

Lithium Ion Battery Chemistries
Author: John T. Warner
Publisher: Elsevier
Release Date: 2019-05-10
Pages: 353
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Lithium-Ion Battery Chemistries: A Primer offers a simple description on how different lithium-ion battery chemistries work, along with their differences. It includes a refresher on the basics of electrochemistry and thermodynamics, and an understanding of the fundamental processes that occur in the lithium-ion battery. Furthermore, it reviews each of the major chemistries that are in use today, including Lithium-Iron Phosphate (LFP), Lithium-Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium-Nickel Manganese Cobalt (NMC), Lithium-Nickel Cobalt Aluminium (NCA), and Lithium-Titanate Oxide (LTO) and outlines the different types of anodes, including carbon (graphite, hard carbon, soft carbon, graphene), silicon, and tin. In addition, the book offers performance comparisons of different chemistries to help users select the right battery for the right application and provides explanations on why different chemistries have different performances and capabilities. Finally, it offers a brief look at emerging and beyond-lithium chemistries, including lithium-air, zinc-air, aluminum air, solid-state, lithium-sulfur, lithium-glass, and lithium-metal. Presents a refresher on the basics of electrochemistry and thermodynamics, along with simple graphics and images of complex concepts Provides a clear-and-concise description of lithium-ion chemistries and how they operate Covers the fundamental processes that occur in lithium-ion batteries Includes a detailed review of current and future chemistries

DIY Lithium Batteries
Author: Micah Toll
Publisher:
Release Date: 2017
Pages: 133
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

An educational guide that covers all the existing types of lithium battery cells and how to assemble them into a custom lithium battery pack.

Fundamentals And Applications Of Lithium Ion Batteries In Electric Drive Vehicles
Author: Jiuchun Jiang
Publisher: John Wiley & Sons
Release Date: 2015-05-18
Pages: 300
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Rechargeable Lithium Ion Batteries
Author: Thandavarayan Maiyalagan
Publisher: CRC Press
Release Date: 2020-12-18
Pages: 370
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Lithium-ion batteries are the most promising among the secondary battery technologies, for providing high energy and high power required for hybrid electric vehicles (HEV) and electric vehicles (EV). Lithium-ion batteries consist of conventional graphite or lithium titanate as anode and lithium transition metal-oxides as cathode. A lithium salt dissolved in an aprotic solvent such as ethylene carbonate and diethylene carbonate is used as electrolyte. This rechargeable battery operates based on the principle of electrochemical lithium insertion/re-insertion or intercalation/de-intercalation during charging/discharging of the battery. It is essential that both electrodes have layered structure which should accept and release the lithium-ion. In advanced lithium-ion battery technologies, other than layered anodes are also considered. High cell voltage, high capacity as well as energy density, high Columbic efficiency, long cycle life, and convenient to fabricate any size or shape of the battery, are the vital features of this battery technology. Lithium-ion batteries are already being used widely in most of the consumer electronics such as mobile phones, laptops, PDAs etc. and are in early stages of application in HEV and EV, which will have far and wide implications and benefits to society. The book contains ten chapters, each focusing on a specific topic pertaining to the application of lithium-ion batteries in Electric Vehicles. Basic principles, electrode materials, electrolytes, high voltage cathodes, recycling spent Li-ion batteries and battery charge controller are addressed. This book is unique among the countable books focusing on the lithium-ion battery technologies for vehicular applications. It provides fundamentals and practical knowledge on the lithium-ion battery for vehicular application. Students, scholars, academicians, and battery and automobile industries will find this volume useful.

Electric Vehicle Battery Systems
Author: Sandeep Dhameja
Publisher: Elsevier
Release Date: 2001-10-30
Pages: 252
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications. Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems. * Addresses cost and efficiency as key elements in the design process * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies * Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies

Linden S Handbook Of Batteries  4th Edition
Author: Thomas Reddy
Publisher: McGraw Hill Professional
Release Date: 2010-06-05
Pages: 1200
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The most complete and up-to-date guide to battery technology and selection Thoroughly revised throughout, Linden's Handbook of Batteries, Fourth Editions provides authoritative coverage of the characteristics, properties, and performance of every major battery type. New information on emerging battery systems and their applications is included in this definitive volume. International experts offer unparalleled technical guidance on using leading-edge technologies, materials, and methods in new designs and products, and selecting the most suitable battery for a particular application. All of the in-depth data you need is contained in this comprehensive resource. The book will be useful to graduate students, battery researchers, applications engineers, and all others interested in the state-of-the-art in battery technology. Linden's Handbook of Batteries, Fourth Edition covers: PRINCIPLES OF OPERATION PRIMARY AND SECONDARY BATTERIES SPECIALIZED BATTERY SYSTEMS FUEL CELLS AND ELECTROCHEMICAL CAPACITORS Includes new chapters on: Battery modeling Battery electrolytes Lithium-ion batteries Battery selection for consumer electronics Batteries for electric, hybrid, and plug-in hybrid vehicles Batteries for electrical energy storage systems Batteries for biomedical applications Button cell batteries Batteries for military and space applications, including reserve water-activated and reserve military batteries Electrochemical capacitors

Lithium Ion Battery Failures In Consumer Electronics
Author: Ashish Arora
Publisher: Artech House
Release Date: 2019-04-30
Pages: 238
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This comprehensive resource caters to system designers that are looking to incorporate lithium ion (li-ion) batteries in their applications. Detailed discussion of the various system considerations that must be addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.

Advances In Battery Manufacturing  Service  And Management Systems
Author: Jingshan Li
Publisher: John Wiley & Sons
Release Date: 2016-10-24
Pages: 416
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Addresses the methodology and theoretical foundation of battery manufacturing, service and management systems (BM2S2), and discusses the issues and challenges in these areas This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, operations, and hybrid storage systems to ensure overall performance and safety, as well as EV management. The contributors consist of experts from universities, industry research centers, and government agency. In addition, this book: Provides comprehensive overviews of lithium-ion battery and battery electrical vehicle manufacturing, as well as economic returns and government support Introduces integrated models for quality propagation and productivity improvement, as well as indicators for bottleneck identification and mitigation in battery manufacturing Covers models and diagnosis algorithms for battery SOC and SOH estimation, data-driven prognosis algorithms for predicting the remaining useful life (RUL) of battery SOC and SOH Presents mathematical models and novel structure of battery equalizers in battery management systems (BMS) Reviews the state of the art of battery, supercapacitor, and battery-supercapacitor hybrid energy storage systems (HESSs) for advanced electric vehicle applications Advances in Battery Manufacturing, Services, and Management Systems is written for researchers and engineers working on battery manufacturing, service, operations, logistics, and management. It can also serve as a reference for senior undergraduate and graduate students interested in BM2S2.

Advances In Battery Technologies For Electric Vehicles
Author: Bruno Scrosati
Publisher: Woodhead Publishing
Release Date: 2015-05-25
Pages: 546
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. Provides an in-depth look into new research on the development of more efficient, long distance travel batteries Contains an introductory section on the market for battery and hybrid electric vehicles Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries

Fire Hazard Assessment Of Lithium Ion Battery Energy Storage Systems
Author: Andrew F. Blum
Publisher: Springer
Release Date: 2016-08-06
Pages: 90
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Providing a concise overview of lithium-ion (Li-ion) battery energy storage systems (ESSs), this book also presents the full-scale fire testing of 100 kilowatt hour (kWh) Li-ion battery ESSs. It details a full-scale fire testing plan to perform an assessment of Li-ion battery ESS fire hazards, developed after a thorough technical study. It documents the results of the testing plan including external and internal ignition testing, ESS positioning, temperature and heat flux measurements, pressure measurement, weather meters, and data acquisition systems. A comprehensive literature review and gap analysis reveal the current state of research into this vital aspect of energy storage. The authors cover the characteristics and hazards of Li-ion batteries, their anatomy and design, commercial and residential ESSs, historical fire incidents, and ESS codes and regulations. Researchers and professionals working in fire protection engineering, battery systems engineering, or energy storage will find this book a useful example of a fire testing plan. The results of the hazard assessment offer insights for those involved in electrical, fire, and building codes, as well as practitioners in design standards and fire testing.

Power Electronics Handbook
Author: F. F. Mazda
Publisher: Elsevier
Release Date: 1997
Pages: 441
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Written by a practising electronics engineer for practising engineers, this reference covers the design of power circuits. This edition has been updated and expanded to include a new chapter on Smart Power (power integrated circuits)

Battery Safety And Abuse Tolerance
Author: D. H. Doughty
Publisher: The Electrochemical Society
Release Date: 2008-03
Pages: 49
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Safety of batteries and electrochemical capacitors has taken on more importance for battery manufacturers, government regulators as well as system integrators. Papers in this issue describe all aspects of battery and electrochemical capacitor safety, including new materials and their reactivity, decomposition reactions that generate heat and gas, the role of separators in abuse response and battery pack design.

Electric Bicycles
Author: William C. Morchin
Publisher: Electric Bicycle Manual
Release Date: 2006
Pages: 190
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Design or build a battery–powered electric bicycle For much of the world, bicycles are a transportation mainstay. Electric bicycles––powered by a rechargeable battery pack––are proven to deliver the highest possible energy efficiency, even compared to pedal bikes. A transportation alternative to fossil fuels, electric bicycles are fast catching on, in part because they don′t require factory assembly. End–users can easily construct them with available components. The text reveals important techniques, data, and examples that allow readers to judge various propulsion setups––used in both home– and factory–made bikes––and estimate speed and travel distance for each. Numerous charts clearly present the costs, benefits, and trade–offs between both commercial and user–converted models. Key features include: Estimating motor–performance for wind, hill, and cruising power requirements Estimating battery capacity and a thorough description of battery charging Motor and motor–control options Evaluating motor–to–wheel coupling options Placement of propulsion components Configurations and performance How systems–engineering techniques can produce electric–bicycle designs that have long travel range and low life–cycle cost Testing Developments to watch A comprehensive resource for harnessing innovation, Electric Bicycles is the definitive practical guide to taking full advantage of this exciting alternative energy technology.