membrane reactors for energy applications and basic chemical production

Membrane Reactors For Energy Applications And Basic Chemical Production
Author: Angelo Basile
Publisher: Elsevier
Release Date: 2015-02-10
Pages: 696
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Handbook Of Membrane Reactors
Author: Angelo Basile
Publisher: Elsevier
Release Date: 2013-04-04
Pages: 968
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane reactors are increasingly replacing conventional separation, process and conversion technologies across a wide range of applications. Exploiting advanced membrane materials, they offer enhanced efficiency, are very adaptable and have great economic potential. There has therefore been increasing interest in membrane reactors from both the scientific and industrial communities, stimulating research and development. The two volumes of the Handbook of membrane reactors draw on this research to provide an authoritative review of this important field. Volume 2 reviews reactor types and industrial applications, beginning in part one with a discussion of selected types of membrane reactor and integration of the technology with industrial processes. Part two goes on to explore the use of membrane reactors in chemical and large-scale hydrogen production from fossil fuels. Electrochemical devices and transport applications of membrane reactors are the focus of part three, before part four considers the use of membrane reactors in environmental engineering, biotechnology and medicine. Finally, the book concludes with a discussion of the economic aspects of membrane reactors. With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of membrane reactors provide an authoritative guide for membrane reactor researchers and materials scientists, chemical and biochemical manufacturers, industrial separations and process engineers, and academics in this field. Discusses integration of membrane technology with industrial processes Explores the use of membrane reactors in chemical and large-scale hydrogen production from fossil fuels Considers electrochemical devices and transport applications of membrane reactors

Membrane And Membrane Reactors Operations In Chemical Engineering
Author: Adolfo Iulianelli
Publisher: MDPI
Release Date: 2019-06-14
Pages: 154
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This Special Issue is aimed at highlighting the potentialities of membrane and membrane reactor operations in various sectors of chemical engineering, based on application of the process intensification strategy. In all of the contributions, the principles of process intensification were pursued during the adoption of membrane technology, demonstrating how it may lead to the development of redesigned processes that are more compact and efficient while also being more environmental friendly, energy saving, and amenable to integration with other green processes. This Special Issue comprises a number of experimental and theoretical studies dealing with the application of membrane and membrane reactor technology in various scientific fields of chemical engineering, such as membrane distillation for wastewater treatment, hydrogen production from reforming reactions via inorganic membrane and membrane photoassisted reactors, membrane desalination, gas/liquid phase membrane separation of CO2, and membrane filtration for the recovery of antioxidants from agricultural byproducts, contributing to valorization of the potentialities of membrane operations.

Membrane Reactor Engineering
Author: Angelo Basile
Publisher: John Wiley & Sons
Release Date: 2016-09-19
Pages: 344
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Uniquely focussed on the engineering aspects of membrane reactors Provides tools for analysis with specific regard to sustainability Applications include water treatment, wastewater recycling, desalination, biorefineries, agro-food production Membrane reactors can bring energy saving, reduced environmental impact and lower operating costs

Membrane Reactors For Hydrogen Production Processes
Author: Marcello De Falco
Publisher: Springer Science & Business Media
Release Date: 2011-03-25
Pages: 235
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane Reactors for Hydrogen Production Processes deals with technological and economic aspects of hydrogen selective membranes application in hydrogen production chemical processes. Membrane Reactors for Hydrogen Production Processes starts with an overview of membrane integration in the chemical reaction environment, formulating the thermodynamics and kinetics of membrane reactors and assessing the performance of different process architectures. Then, the state of the art of hydrogen selective membranes, membrane manufacturing processes and the mathematical modeling of membrane reactors are discussed. A review of the most useful applications from an industrial point of view is given. These applications include: natural gas steam reforming, autothermal reforming, water gas shift reaction, decomposition of hydrogen sulphide, and alkanes dehydrogenation. The final part is dedicated to the description of a pilot plant where the novel configuration was implemented at a semi-industrial scale. Plant engineers, researchers and postgraduate students will find Membrane Reactors for Hydrogen Production Processes a comprehensive guide to the state of the art of membrane reactor technology.

Current Trends And Future Developments On  Bio   Membranes
Author: Angelo Basile
Publisher: Elsevier
Release Date: 2020-01-05
Pages: 412
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Current Trends and Future Developments in (Bio-) Membranes: Recent Advances in Metallic Membranes presents recent developments in metallic membranes used in membrane reactors to save energy. It also offers a comprehensive review of the present state-of-the-art on the fabrication and design of metallic membranes and membrane reactors, considering various applications. This book focuses on the structure, preparation, characterization and applications of metallic membranes and membrane reactors, as well as transport mechanisms and simulation aspects. As recent research has focused on the development of metallic membranes and their applications, this book is an ideal reference on different production procedures and their use. Reviews metallic membranes research and applications Outlines the mechanisms of metallic membrane based processes Includes structure, preparation, characterization and properties of metallic membranes Highlights various applications of metallic membranes in energy production

Inorganic Membrane Reactors
Author: Xiaoyao Tan
Publisher: John Wiley & Sons
Release Date: 2015-03-02
Pages: 304
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane reactors combine membrane functions such as separation, reactant distribution, and catalyst support with chemical reactions in a single unit. The benefits of this approach include enhanced conversion, increased yield, and selectivity, as well as a more compact and cost-effect design of reactor system. Hence, membrane reactors are an effective route toward chemical process intensification. This book covers all types of porous membrane reactors, including ceramic, silica, carbon, zeolite, and dense metallic reactors such as Pd or Pd-alloy, oxygen ion-conducting, and proton-conducting ceramics. For each type of membrane reactor, the membrane transport principles, membrane fabrication, configuration and operation of membrane reactors, and their current and potential applications are described comprehensively. A summary of the critical issues and hurdles for each membrane reaction process is also provided, with the aim of encouraging successful commercial applications. The audience for Inorganic Membrane Reactors includes advanced students, industrial and academic researchers, and engineers with an interest in membrane reactors.

Catalytic Membranes And Membrane Reactors
Author: José G. Sanchez Marcano
Publisher: Wiley-VCH
Release Date: 2011-01-01
Pages: 320
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane reactors are an inherently multidisciplinary concept combining chemical reaction engineering, separation technology, materials science, and mathematical modelling aspects. They couple chemical reactions with membrane separation and provide a more compact and less capital intensive system design. Often also improved performance in terms of enhanced selectivity or yield results from their use. This authoritative work encompasses a broad treatment of the field, including the basic principles of membrane reactors, a comparative study of these and other, classical reactors, modelling, industrial applications, emerging applications, etc. This is the first point of reference when it comes to applying the membrane reactor concept to research or to production: Novices can grasp the elementary concepts, and professionals can familiarize themselves with the most recent developments in the area. For the industrial practitioner the book covers all important current and potential future applications.

Membranes For Membrane Reactors
Author: Angelo Basile
Publisher: John Wiley & Sons
Release Date: 2010-12-20
Pages: 648
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

A membrane reactor is a device for simultaneously performing a reaction and a membrane-based separation in the same physical device. Therefore, the membrane not only plays the role of a separator, but also takes place in the reaction itself. This text covers, in detail, the preparation and characterisation of all types of membranes used in membranes reactors. Each membrane synthesis process used by membranologists is explained by well known scientists in their specific research field. The book opens with an exhaustive review and introduction to membrane reactors, introducing the recent advances in this field. The following chapters concern the preparation of both organic and inorganic, and in both cases, a deep analysis of all the techniques used to prepare membrane are presented and discussed. A brief historical introduction for each technique is also included, followed by a complete description of the technique as well as the main results presented in the international specialized literature. In order to give to the reader a summary look to the overall work, a conclusive chapter is included for collecting all the information presented in the previous chapters. Key features: Fills a gap in the market for a scientific book describing the preparation and characterization of all the kind of membranes used in membrane reactors Discusses an important topic - there is increasing emphasis on membranes in general, due to their use as energy efficient separation tools and the ‘green’ chemistry opportunities they offer Includes a review about membrane reactors, several chapters concerning the preparation organic, inorganic, dense, porous, and composite membranes and a conclusion with a comparison among the different membrane preparation techniques

Membrane Technology
Author: Suzana Pereira Nunes
Publisher: John Wiley & Sons
Release Date: 2006-12-13
Pages: 354
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane Technology - a clean and energy saving alternative to traditional/conventional processes. Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and for controlled production of valuable chemicals. This book outlines several established applications of membranes in the chemical industry, reviews the available membranes and membrane processes for the field, and discusses the huge potential of this technology in chemical processes. Each chapter has been written by an international leading expert with extensive industrial experience in the field.

Pd Based Membranes
Author: Thijs Peters
Publisher: MDPI
Release Date: 2019-03-26
Pages: 190
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Palladium (Pd)-based membranes have received a great deal of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. The integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are therefore regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low-carbon, and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.

Membrane Engineering For The Treatment Of Gases  Gas Separation Problems Combined With Membrane Reactors
Author: Enrico Drioli
Publisher: Royal Society of Chemistry
Release Date: 2011
Pages: 344
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This two volume set presents the state-of-the-art, and potential for future developments, in membrane engineering for the separation of gases.

Enabling Membrane Reactor Technology Using Polymeric Membranes For Efficient Energy And Chemical Production
Author: Yixiao Li
Publisher:
Release Date: 2018
Pages:
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Membrane reactor is a device that simultaneously carrying out reaction and membrane-based separation. The advantageous transport properties of the membranes can be employed to selectively remove undesired products or by-products from the reaction mixture, to break the thermodynamic barrier, and to selectively supply the reactant. In this work, membrane reactor technology has been exploited with robust H2 selective polymeric membranes in the process of hydrogenation and dehydrogenation. A state-of-the-art 3-phase catalytic membrane contactor is utilized in the processes of soybean hydrogenation and bio-oil hydro-deoxygenation, where the membrane functions as phase contactor, H2supplier, and catalytic support. Intrinsically skinned asymmetric Polyetherimide (PEI) membranes demonstrated predominant H2permeance and selectivity. By using the PEI membrane in the membrane contactor, soybean oil is partially hydrogenated efficiently at relatively mild reaction conditions compared with a conventional slurry reactor. In the hydroprocessing of bio-oil using the same system, the membrane successfully removed water, an undesired component from bio-oil by pervaporation. The more industrially feasible membrane-assisted reactor is studied in the alkane dehydrogenation process. Viable polymeric materials and their stability in elevated temperatures and organic environment are examined. The blend polymeric material of Matrimid® 5218 and Polybenzimidazole (PBI) remained H2permeable and stable with the presence of hydrocarbons, and displayed consistent selectivity of H2/hydrocarbon, which indicated the feasibility of using the material to fabricate thermally stable membrane for separation. The impact of membrane-assisted reactor is evaluated using finite parameter process simulation in the model reaction of the dehydrogenation of methylcyclohexane (MCH). By combining tested catalyst performance, measured transport properties of the material and hypothetical membrane configuration, by using a membrane assisted packed-bed reactor, the thermodynamic barrier of the reaction is predicted to be broken by the removal of H2. The overall dehydrogenation conversion can be increased by up to 20% beyond equilibrium. The predicted results are justified by preliminary experimental validation using intrinsically skinned asymmetric Matrimid/PBI blend membrane. The conversions at varied temperatures partially exceeded equilibrium, indicating successful removal of H2by the blend membrane as well as decent thermal stability of the membrane at elevated temperatures with the presence of hydrocarbons. The successful outcome of membrane contactor and membrane-assisted reactor using robust polymeric membranes shows the effectiveness and efficiency of membrane reactors in varied application. The future work should be focusing on two direction, to further develop durable and efficient membranes with desired properties; and to improve the reactor system with better catalytic performance, more precise control in order to harvest preferable product and greater yield.

Membranes For Clean And Renewable Power Applications
Author: A Gugliuzza
Publisher: Woodhead Publishing
Release Date: 2014-03-31
Pages: 438
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The development and deployment of membrane technologies continues to advance thanks to innovative materials and novel engineering approaches. Membranes for clean and renewable power applications introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications. Chapters in part one introduce the utilization of membrane technology in the production of clean and renewable power and the combining of membrane processes with renewable energy technologies. Part two focusses on membranes for biofuel production and processing including membranes and membrane reactors for the production of biodiesel and second generation biofuels. Part three discusses membranes for syngas, hydrogen and oxygen production and processing. Chapters highlight steam reforming of biofuels for the production of hydrogen-rich gas A., perovskite membrane reactors, and environmental analysis of hydrogen-methane blends for transportation. Chapters in part four explore membranes for fuel cells including ceramic membranes for intermediate temperature solid oxide fuel cells (SOFC), microbial fuel cells, and direct bioethanol fuel cells. Finally, part five discusses membranes integrated with solar, wind energy and water-related applications including membrane technologies for solar-hydrogen production, solar-desalination plants, and the storage as methane of energy generated by wind power and other renewable sources. A final chapter introduces wastewater processing, energy conservation and energy generation. Membranes for clean and renewable power applications is a comprehensive resource for professionals and consultants in the clean and renewable energy industry, membrane and materials scientists and professionals, and academics and researchers in the field. Introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications

Current Trends And Future Developments On  Bio   Membranes
Author: Adolfo Iulianelli
Publisher: Elsevier
Release Date: 2020-07-22
Pages: 484
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

In the last decade, the attention paid to the environmental protection has generated a considerable interest towards the development of new energy carriers and green energy production methods. Hydrogen as an energy carrier becomes a potential important source of energy due to its neutral environmental impact. However, its production, transformation and purification, presents a challenge in the so called hydrogen economy. Current Trends and Future Developments on (Bio-) Membranes gives a comprehensive review on the present state of the art of the hydrogen production and purification using new and alternative technologies stressing green processes and environment protection. The book covers green processes, renewable feedstocks utilization and membrane reactor technology for hydrogen production in line with new process intensification strategy. The book is divided in four sections, ie fundamentals of hydrogen generation, its impact on environmental issue, new applications involving hydrogen and its storage and distribution. The main scope of this book is to offer a new horizon on hydrogen generation and utilization. It stresses the role of new technologies for hydrogen generation, including the “micro-reactors technology for portable applications , their combination with high temperature fuel cells, the role of gas-separation for both hydrogen purification and CO2 sequestration, the exploitation of renewable sources (biogas, bioethanol and other renewables feedstocks) in reforming processes useful to generate hydrogen, membrane and membrane reactor technology as well as membrane bio-reactors etc. Presents process intensification and commercialization of new and alternative hydrogen generation technologies Relates new hydrogen production methods to their environmental impact Outlines the fundamentals of hydrogen generation Includes new developed technologies for hydrogen transport and storage

Membranes For Environmental Applications
Author: Zhien Zhang
Publisher: Springer Nature
Release Date: 2020-02-29
Pages: 520
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book introduces recent developments of membrane technologies applied to gas and water treatments, energy processes and environmental issues. Novel knowledge and mechanisms on membrane fabrication and usage in energy, chemical, and environmental engineering are detailed in 12 book chapters from France, UK, Spain, China, Nigeria, Iran and Pakistan. The information in this book will be useful for engineers, students, and experts in these fields.

Advanced Membrane Technology And Applications
Author: Norman N Li
Publisher: John Wiley & Sons
Release Date: 2011-09-20
Pages: 1016
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Advanced membranes-from fundamentals and membrane chemistry to manufacturing and applications A hands-on reference for practicing professionals, Advanced Membrane Technology and Applications covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications. This practical guide: Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization Includes discussions of important strategic issues and the future of membrane technology With chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.

Handbook Of Membrane Separations
Author: Anil K. Pabby
Publisher: CRC Press
Release Date: 2008-07-07
Pages: 1184
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications provides detailed information on membrane separation technologies as they have evolved over the past decades. To provide a basic understanding of membrane technology, this book documents the developments dealing with these technologies. It explores chemical, pharmaceutical, food processing and biotechnological applications of membrane processes ranging from selective separation to solvent and material recovery. This text also presents in-depth knowledge of membrane separation mechanisms, transport models, membrane permeability computations, membrane types and modules, as well as membrane reactors.

Ceramic Membranes For Separation And Reaction
Author: Kang Li
Publisher: John Wiley & Sons
Release Date: 2007-04-30
Pages: 316
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Ceramic Membranes for Reaction and Separation is the first single-authored guide to the developing area of ceramic membranes. Starting by documenting established procedures of ceramic membrane preparation and characterization, this title then focuses on gas separation. The final chapter covers ceramic membrane reactors;- as distributors and separators, and general engineering considerations. Chapters include key examples to illustrate membrane synthesis, characterisation and applications in industry. Theoretical principles, advantages and disadvantages of using ceramic membranes under the various conditions are discussed where applicable.

Potential For Industrial Energy Efficiency Improvement In The Long Term
Author: J. de Beer
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Pages: 254
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book does not give a prediction of what the efficiency will be of the energy use of industrial processes in the future. However, it does give an exploration of limits to the efficiency of current processes and an indication of what might be achieved if new technologies can be developed. At the Department of Science, Technology and Society of Utrecht University research had been done to the opportunities for improvement of the energy efficiency in the short term since the 1980's. This had resulted in a comprehensive database on energy efficient measures. This database and a possible application are described in Chapter 3 of this book. The use of the database induced new research themes around efficiency improvement, e.g. concerning barriers for implementation of measures. It was around 1993 that I did a preliminary study to the potential for efficiency improvement in the long term. Historical analysis had shown us that the short term potential stayed constant over the years. It seemed to be replenished by the introduction of new technologies. This lead to the question whether there are limits to the efficiency, taking into account both thermodynamic considerations and ideas on the development and dissemination of new technologies.