intelligent data analysis for biomedical applications

Intelligent Data Analysis For Biomedical Applications
Author: Hemanth D. Jude
Publisher: Academic Press
Release Date: 2019-03-15
Pages: 294
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases. Provides the methods and tools necessary for intelligent data analysis and gives solutions to problems resulting from automated data collection Contains an analysis of medical databases to provide diagnostic expert systems Addresses the integration of intelligent data analysis techniques within biomedical information systems

Computational Learning Approaches To Data Analytics In Biomedical Applications
Author: Khalid Al-Jabery
Publisher: Academic Press
Release Date: 2019-11-29
Pages: 310
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. Includes an overview of data analytics in biomedical applications and current challenges Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices Provides complete coverage of computational and statistical analysis tools for biomedical data analysis Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Intelligent Data Analysis And Applications
Author: Ajith Abraham
Publisher: Springer
Release Date: 2015-07-14
Pages: 560
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This volume of Advances in Intelligent Systems and Computing contains accepted papers presented in the main track of ECC 2015, the Second Euro-China Conference on Intelligent Data Analysis and Applications. The aim of ECC is to provide an internationally respected forum for scientific research in the broad area of intelligent data analysis, computational intelligence, signal processing, and all associated applications of AIs. The second edition of ECC was organized jointly by VSB - Technical University of Ostrava, Czech Republic, and Fujian University of Technology, Fuzhou, China. The conference, organized under the patronage of Mr. Miroslav Novak, President of the Moravian-Silesian Region, took place in late June and early July 2015 in the Campus of the VSB - Technical University of Ostrava, Czech Republic.

Deep Learning For Data Analytics
Author: Himansu Das
Publisher: Academic Press
Release Date: 2020-05-29
Pages: 218
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design and implementation of deep learning concepts using data analytics techniques in large scale environments. Deep learning algorithms are based on artificial neural network models to cascade multiple layers of nonlinear processing, which aids in feature extraction and learning in supervised and unsupervised ways, including classification and pattern analysis. Deep learning transforms data through a cascade of layers, helping systems analyze and process complex data sets. Deep learning algorithms extract high level complex data and process these complex sets to relatively simpler ideas formulated in the preceding level of the hierarchy. The authors of this book focus on suitable data analytics methods to solve complex real world problems such as medical image recognition, biomedical engineering, and object tracking using deep learning methodologies. The book provides a pragmatic direction for researchers who wish to analyze large volumes of data for business, engineering, and biomedical applications. Deep learning architectures including deep neural networks, recurrent neural networks, and deep belief networks can be used to help resolve problems in applications such as natural language processing, speech recognition, computer vision, bioinoformatics, audio recognition, drug design, and medical image analysis. Presents the latest advances in Deep Learning for data analytics and biomedical engineering applications. Discusses Deep Learning techniques as they are being applied in the real world of biomedical engineering and data science, including Deep Learning networks, deep feature learning, deep learning toolboxes, performance evaluation, Deep Learning optimization, deep auto-encoders, and deep neural networks Provides readers with an introduction to Deep Learning, along with coverage of deep belief networks, convolutional neural networks, Restricted Boltzmann Machines, data analytics basics, enterprise data science, predictive analysis, optimization for Deep Learning, and feature selection using Deep Learning

Handbook Of Research On Advanced Techniques In Diagnostic Imaging And Biomedical Applications
Author: Exarchos, Themis P.
Publisher: IGI Global
Release Date: 2009-04-30
Pages: 598
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

"This book includes state-of-the-art methodologies that introduce biomedical imaging in decision support systems and their applications in clinical practice"--Provided by publisher.

Intelligent Data Analysis
Author: Deepak Gupta
Publisher: John Wiley & Sons
Release Date: 2020-07-07
Pages: 400
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.

Data Analytics In Biomedical Engineering And Healthcare
Author: Kun Chang Lee
Publisher: Academic Press
Release Date: 2020-10-23
Pages: 292
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

Hybrid Computational Intelligence
Author: Siddhartha Bhattacharyya
Publisher: Academic Press
Release Date: 2020-03-05
Pages: 250
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. Provides insights into the latest research trends in hybrid intelligent algorithms and architectures Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction Features hybrid intelligent applications in biomedical engineering and healthcare informatics

Advances In Intelligent Data Analysis VI
Author: A. Fazel Famili
Publisher: Springer Science & Business Media
Release Date: 2005-08-30
Pages: 522
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book constitutes the refereed proceedings of the 6th International Conference on Intelligent Data Analysis, IDA 2005, held in Madrid, Spain in September 2005. The 46 revised papers presented together with two tutorials and two invited talks were carefully reviewed and selected from 184 submissions. All current aspects of this interdisciplinary field are addressed; the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.

Intelligent Big Data Analytics For Biomedical And Health Informatics
Author: Sunil Kuma Dhal
Publisher: Wiley-Scrivener
Release Date: 2021-10-05
Pages: 350
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Medical Applications Of Artificial Intelligence
Author: Arvin Agah
Publisher: CRC Press
Release Date: 2013-11-06
Pages: 526
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Applications of Artificial Intelligence reviews the research, focusing on state-of-the-art projects in the field. The book captures the breadth and depth of the medical applications of artificial intelligence, exploring new developments and persistent challenges.

Internet Of Things In Biomedical Engineering
Author: Valentina E. Balas
Publisher: Academic Press
Release Date: 2019-06-14
Pages: 379
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on ‘daily life.’ Contributors from various experts then discuss ‘computer assisted anthropology,’ CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications Discusses big data and data mining in healthcare and other IoT based biomedical data analysis Includes discussions on a variety of IoT applications and medical information systems Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT

Intelligent Techniques For Data Analysis In Diverse Settings
Author: Celebi, Numan
Publisher: IGI Global
Release Date: 2016-04-20
Pages: 353
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Data analysis forms the basis of many forms of research ranging from the scientific to the governmental. With the advent of machine intelligence and neural networks, extracting, modeling, and approaching data has been unimpeachably altered. These changes, seemingly small, affect the way societies organize themselves, deliver services, or interact with each other. Intelligent Techniques for Data Analysis in Diverse Settings addresses the specialized requirements of data analysis in a comprehensive way. This title contains a comprehensive overview of the most innovative recent approaches borne from intelligent techniques such as neural networks, rough sets, fuzzy sets, and metaheuristics. Combining new data analysis technologies, applications, emerging trends, and case studies, this publication reviews the intelligent, technological, and organizational aspects of the field. This book is ideally designed for IT professionals and students, data analysis specialists, healthcare providers, and policy makers.

Predictive Intelligence In Biomedical And Health Informatics
Author: Rajshree Srivastava
Publisher:
Release Date: 2020-10-12
Pages: 190
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Predictive Intelligence in Biomedical and Health Informatics focuses on imaging, computer-aided diagnosis and therapy as well as intelligent biomedical image processing and analysis. It develops computational models, methods and tools for biomedical engineering related to computer-aided diagnostics (CAD), computer-aided surgery (CAS), computational anatomy and bioinformatics. Large volumes of complex data are often a key feature of biomedical and engineering problems and computational intelligence helps to address such problems. Practical and validated solutions to hard biomedical and engineering problems can be developed by the applications of neural networks, support vector machines, reservoir computing, evolutionary optimization, biosignal processing, pattern recognition methods and other techniques to address complex problems of the real world.

Data Mining  Foundations And Intelligent Paradigms
Author: Dawn E. Holmes
Publisher: Springer Science & Business Media
Release Date: 2012-01-12
Pages: 364
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 3: Medical, Health, Social, Biological and other Applications” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Advances In Intelligent Analysis Of Medical Data And Decision Support Systems
Author: Roumen Kountchev
Publisher: Springer
Release Date: 2013-02-11
Pages: 247
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This volume is a result of the fruitful and vivid discussions during the MedDecSup'2012 International Workshop bringing together a relevant body of knowledge, and new developments in the increasingly important field of medical informatics. This carefully edited book presents new ideas aimed at the development of intelligent processing of various kinds of medical information and the perfection of the contemporary computer systems for medical decision support. The book presents advances of the medical information systems for intelligent archiving, processing, analysis and search-by-content which will improve the quality of the medical services for every patient and of the global healthcare system. The book combines in a synergistic way theoretical developments with the practicability of the approaches developed and presents the last developments and achievements in medical informatics to a broad range of readers: engineers, mathematicians, physicians, and PhD students.

Data Mining And Medical Knowledge Management  Cases And Applications
Author: Berka, Petr
Publisher: IGI Global
Release Date: 2009-02-28
Pages: 464
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The healthcare industry produces a constant flow of data, creating a need for deep analysis of databases through data mining tools and techniques resulting in expanded medical research, diagnosis, and treatment. Data Mining and Medical Knowledge Management: Cases and Applications presents case studies on applications of various modern data mining methods in several important areas of medicine, covering classical data mining methods, elaborated approaches related to mining in electroencephalogram and electrocardiogram data, and methods related to mining in genetic data. A premier resource for those involved in data mining and medical knowledge management, this book tackles ethical issues related to cost-sensitive learning in medicine and produces theoretical contributions concerning general problems of data, information, knowledge, and ontologies.

Intelligent Medical Technologies And Biomedical Engineering  Tools And Applications
Author: Shukla, Anupam
Publisher: IGI Global
Release Date: 2010-06-30
Pages: 376
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Intelligent Medical Technologies and Biomedical Engineering: Tools and Applications helps young researchers and developers understand the basics of the field while highlighting the various developments over the last several years. Broad in scope and comprehensive in depth, this volume serves as a base text for any project or work into the domain of medical diagnosis or other areas of medical engineering.

Trends And Innovations In Information Systems And Technologies
Author: Álvaro Rocha
Publisher: Springer Nature
Release Date: 2020-05-17
Pages: 615
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book gathers selected papers presented at the 2020 World Conference on Information Systems and Technologies (WorldCIST’20), held in Budva, Montenegro, from April 7 to 10, 2020. WorldCIST provides a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences with and challenges regarding various aspects of modern information systems and technologies. The main topics covered are A) Information and Knowledge Management; B) Organizational Models and Information Systems; C) Software and Systems Modeling; D) Software Systems, Architectures, Applications and Tools; E) Multimedia Systems and Applications; F) Computer Networks, Mobility and Pervasive Systems; G) Intelligent and Decision Support Systems; H) Big Data Analytics and Applications; I) Human–Computer Interaction; J) Ethics, Computers & Security; K) Health Informatics; L) Information Technologies in Education; M) Information Technologies in Radiocommunications; and N) Technologies for Biomedical Applications.

Big Data Analytics For Intelligent Healthcare Management
Author: Nilanjan Dey
Publisher: Academic Press
Release Date: 2019-04-15
Pages: 312
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more