dislocation mechanism based crystal plasticity

Dislocation Mechanism Based Crystal Plasticity
Author: Zhuo Zhuang
Publisher: Academic Press
Release Date: 2019-04-12
Pages: 450
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Thermally Activated Mechanisms In Crystal Plasticity
Author: D. Caillard
Publisher: Elsevier
Release Date: 2003-09-08
Pages: 452
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

KEY FEATURES: A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.

The Investigation Of Plastic Behavior By Discrete Dislocation Dynamics For Single Crystal Pillar At Submicron Scale
Author: Yinan Cui
Publisher: Springer
Release Date: 2016-10-26
Pages: 131
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.

Single Crystal Plasticity By Modeling Dislocation Density Rate Behavior
Author:
Publisher:
Release Date: 2010
Pages:
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 104 s−1. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

Strengthening Mechanisms In Crystal Plasticity
Author: Ali Argon
Publisher: Oxford University Press on Demand
Release Date: 2008
Pages: 404
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Technologically important metals and alloys have been strengthened throughout history by a variety of empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here in a comprehensive form through mechanistic models and associated experimental results.

Finite Element Simulation Of Dislocation Based Plasticity And Diffusion In Multiphase Materials At High Temperature
Author: Albiez, Jürgen
Publisher: KIT Scientific Publishing
Release Date: 2019-05-22
Pages: 222
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Gradient Plasticity Model And Its Implementation Into MARMOT
Author:
Publisher:
Release Date: 2013
Pages:
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

Crystal Dislocations  Their Impact On Physical Properties Of Crystals
Author: Peter Lagerlof
Publisher: MDPI
Release Date: 2019-01-09
Pages: 316
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book is a printed edition of the Special Issue "Crystal Dislocations: Their Impact on Physical Properties of Crystals" that was published in Crystals

Magnesium Technology 2017
Author: Kiran N. Solanki
Publisher: Springer
Release Date: 2017-02-14
Pages: 689
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2017 covers a broad spectrum of current topics, including alloys and their properties; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; ecology; and structural applications. In addition, there is coverage of new and emerging applications.

Mesoscale Models
Author: Sinisa Mesarovic
Publisher: Springer
Release Date: 2018-11-19
Pages: 344
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,

Understanding The Deformation Mechanisms In Ni Based Superalloys With Using Crystal Plasticity Finite Element Method
Author: Tianju Chen
Publisher:
Release Date: 2020
Pages: 89
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

"Ni-based superalloy is considered as a good candidate due to its excellent resistance to elevated temperature deformation for long term period application. Understanding the deformation and failure mechanisms of Ni-Based superalloys is very helpful for providing design guidelines for processing Ni-based superalloys. Experimental characterization indicates that the deformation mechanisms of Ni based superalloy is strongly microstructure dependent. Besides, damage transform from the void nucleation to the macro cracks by voids growth leading to the failure of the Ni-based superalloys are also showing strong microstructure sensitivity. Therefore, this work focuses on the prediction and comprehension of the deformation and void growth behavior in Ni based superalloy at different working conditions via crystal plasticity finite element modeling and simulation. Physically based crystal plasticity frameworks were developed for newly Ni-based superalloy Haynes 282. It was found that dislocation shearing through the precipitates were acting as the main contributor to the strength of Haynes 282 at room temperature and 815°C. Our analysis of the creeping behavior of Haynes 282 exhibited that resistance of general climb replaced by the resistance induced by the deposited climb dislocation density. In addition, in the study of void growth behavior, our simulation results demonstrated that as the main loading axis perpendicular to the grain boundary (GB), voids grow more slowly on tilt GBs in bicrystals than those in single and bicrystals with twist GBs. And tilt GBs would promote the void grow into irregular shape"--Abstract, page iv.

Engineering Plasticity And Its Applications
Author: Nobutada Ohno
Publisher: Trans Tech Publications Ltd
Release Date: 2007-06-15
Pages: 1570
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Volume is indexed by Thomson Reuters CPCI-S (WoS). This edited collection of 240 peer-reviewed articles covers a broad range of topics dealing with plasticity in various materials, such as metals, composites, polymers, foams, soils, and rocks at the nano-, micro- and macro-scales. These informative papers will bring the reader fully up-to-date with the latest research efforts advancing on a broad range of fronts in engineering plasticity

Integrated Computational Materials Engineering  ICME  For Metals
Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
Release Date: 2012-06-07
Pages: 456
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

Crystal Plasticity Finite Element Methods
Author: Franz Roters
Publisher: John Wiley & Sons
Release Date: 2011-08-04
Pages: 208
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Inelastic Behavior Of Materials And Structures Under Monotonic And Cyclic Loading
Author: Holm Altenbach
Publisher: Springer
Release Date: 2015-02-03
Pages: 253
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.

Heterogeneous Materials
Author: Muhammad Sahimi
Publisher: Springer Science & Business Media
Release Date: 2003-05-15
Pages: 638
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

This book describes and discusses the properties of heterogeneous materials. The properties considered include the conductivity (thermal, electrical, magnetic), elastic moduli, dielectrical constant, optical properties, mechanical fracture, and electrical and dielectrical breakdown properties. Both linear and nonlinear properties are considered. The nonlinear properties include those with constitutive nonlinearities as well as threshold nonlinearities, such as brittle fracture and dielectric breakdown. A main goal of this book is to compare two fundamental approaches to describing and predicting materials properties, namely, the continuum mechanics approach and those based on the discrete models. The latter models include the lattice models and the atomistic approaches. The book provides comprehensive and up-to-date theoretical and computer simulation analysis of materials properties. Typical experimental methods for measuring all of these properties are outlined, and comparison is made between the experimental data and the theoretical predictions. Volume I covers linear properties, while volume II considers nonlinear and fracture and breakdown properties, as well as atomistic modeling. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians. Muhammad Sahimi is Professor and Chairman of Chemical Engineering at the University of Southern California in Los Angeles, and Adjunct Professor of Physics at the Institute for Advanced Studies in Basic Sciences in Zanjan, Iran. His current research interests include transport and mechanical properties of heterogeneous materials: flow, diffusion and reaction in porous media, and large-scale scientific complications. Among his honors are the Alexander von Humbodt Foundation Research Award, and the Kapitza Gold Medal.

Plasticity Theory
Author: Jacob Lubliner
Publisher: Courier Corporation
Release Date: 2013-04-22
Pages: 544
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.

Reversible Crystal Plasticity
Author: Vladimir Boyko
Publisher: Springer Science & Business Media
Release Date: 1997-05-09
Pages: 294
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Market: Research scientists and students in materials science, physical metallurgy, and solid state physics. This detailed monograph presents the theory of reversible plasticity as a new direction of development in crystal physics. It features a unique integration of traditional concepts and new studies of high- temperature superconductors, plus in-depth analyses of various related phenomena. Among the topics discussed are elastic twinning (discovered by Dr. Garber), thermoelastic martensite transformation, superelasticity, shape memory effects, the domain structure of ferroelastics, and elastic aftereffect. Partial Contents: 1. Transformation of Dislocations. Dislocation Description of a Phase Transformation Front. 2. Dislocation Theory of Elastic Twinning. Twinning of Crystals: Principal Definitions. 3. Statics and Dynamics of Elastic Twinning. Discovery of Elastic Twinning. Verification of the Validity of the Static Theory in a Description of the Macroscopic Behavior of an Elastic Twin. 4. Thermoelastic Martensitic Transformation. Martensitic Transformation: a Diffusionless Process of Rebuilding the Crystal Lattice. 5. Superelasticity and the Shape Memory Effect. Main Characteristics of Superelasticity and Shape Memory Effects. 6. Reversible Plasticity of Ferroelastics. Ferroelastics: Main Definitions. 7. Investigation of Reversible Plasticity of Crystals by the Acoustic Emission Method. Emission of Sound by Moving Dislocations andTheir Pileups. Methods Used in Experimental Investigations of the Acoustic Emission Generated by a SingleTwin. Acoustic Emission Associated with Elastic Twinning. 8. Influence of Reversible Plasticity of Superconductors on Their Physical Properties. Reversible Changes in the Parameters of Traditional Superconductors under the Action of Elastic Stresses. Influence of Magnetic Fields on Reversible Changes in the Parameters

Single Crystal Gradient Plasticity With An Accumulated Plastic Slip  Theory And Applications
Author: Eric Bayerschen
Publisher: KIT Scientific Publishing
Release Date: 2016-12-29
Pages: 278
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Theory Of Dislocations
Author: Peter M. Anderson
Publisher: Cambridge University Press
Release Date: 2017-01-16
Pages: 950
ISBN:
Available Language: English, Spanish, And French
EBOOK SYNOPSIS:

Originally published: New York: McGraw-Hill, 1967. Editions published: New York: Wiley, 1982, and Malabar, FL: Krieger, 1992.